organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yun-Long Fu,^a Zhi-Wei Xu,^a Jia-Lin Ren^a and Seik Weng Ng^b*

^aSchool of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ Disorder in main residue R factor = 0.058 wR factor = 0.154 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[diethylenetriaminium(3+)] tris(sulfate) monohydrate

The cations, anions and water molecules in the title compound, $2C_4H_{16}N_3^{3+}\cdot 3SO_4^{2-}\cdot H_2O$, are linked by hydrogen bonds into a three-dimensional network structure. The water molecule and one sulfate anion lie on special positions of site symmetry 2; one of the sulfate anions is disordered.

Received 15 February 2005 Accepted 17 February 2005 Online 26 February 2005

Comment

The diethylenetriammonium $[NH_3CH_2CH_2NH_2CH_2CH_2-NH_3]$ trication forms only a small number of salts with mineral acids. The trication has been crystallographically characterized as the trichloride (Golubev & Kondrashev, 1981; Ilioudis *et al.*, 2000), tribromide (Ilioudis *et al.*, 2000), chloride diperchlorate (Mazus *et al.*, 1987), trinitrate (Rogers & Bauer, 1994) and cyclophosphate dihydrate (Gharbi *et al.*, 1995). The title compound exists as a monohydrate, (I) (Fig. 1); there are two independent sulfate dianions, one of which is disordered about a twofold axis. Hydrogen bonds link the cations, anions and water molecules into a three-dimensional network structure (Table 2).

$2[NH_{3}CH_{2}CH_{2}NH_{2}CH_{2}CH_{2}NH_{3}]^{3+} \ 3[SO_{4}]^{2-} \ H_{2}O \\ (I)$

Experimental

Ferric sulfate nonahydrate (0.281 g, 0.5 mmol), sodium acetate (0.21 g, 1 mmol), diethylenetriamine (0.15 ml, 0.13 mmol), concen-

Figure 1

ORTEPII (Johnson, 1976) plot of $2C_4H_{16}N_3^{3+}\cdot 3SO_4^{2-}\cdot H_2O$. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii. Only one set of the disordered O atoms of S2 is shown.

O 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

trated sulfuric acid (0.16 ml), water (6 ml), ethanol (5 ml) and glycol (7 ml) were placed in a Teflon-lined stainless steel bomb. The bomb was heated in an autoclave at 383 K for 4 d and then cooled to room temperature to furnish crystals of (I). Iron was not incorporated into the compound isolated.

 $D_x = 1.566 \text{ Mg m}^{-3}$

Cell parameters from 1515

 $0.15 \times 0.13 \times 0.12 \text{ mm}$

Mo $K\alpha$ radiation

reflections $\theta = 2.5 - 27.1^{\circ}$

 $\mu = 0.41 \text{ mm}^{-1}$

T = 295 (2) K

Block, yellow

Crystal data

 $2C_{4}H_{16}N_{3}^{3+} \cdot 3SO_{4}^{2-} \cdot H_{2}O$ $M_{r} = 518.59$ Monoclinic, C2/c a = 10.249 (1) Å b = 13.648 (1) Å c = 16.082 (2) Å $\beta = 102.045$ (2)° V = 2199.9 (4) Å³ Z = 4

Data collection

Bruker APEX area-detector	1971 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.033$
φ and ω scans	$\theta_{\rm max} = 27.5^{\circ}$
Absorption correction: None	$h = -10 \rightarrow 13$
6500 measured reflections	$k = -17 \rightarrow 17$
2468 independent reflections	$l = -16 \rightarrow 20$
*	

Refinement

_ . . .

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0814P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.058$	+ 3.1409P]
$wR(F^2) = 0.154$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
2468 reflections	$\Delta \rho_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$
155 parameters	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: none
independent and constrained	
refinement	

Table 1			
Selected	geometric parameters	(Å,	°).

S1-O1	1.476 (2)	S2-O8	1.439 (4)
S1-O2	1.470 (2)	N1-C1	1.474 (4)
S1-O3	1.473 (2)	N2-C3	1.474 (4)
S1-O4	1.455 (2)	N2-C2	1.474 (4)
S2-O5	1.471 (3)	N3-C4	1.466 (4)
S2-O6	1.465 (4)	C1-C2	1.510 (4)
S2-O7	1.486 (3)	C3-C4	1.500 (4)
O1-S1-O2	108.6 (2)	O6-S2-O7	104.5 (4)
O1-S1-O3	109.1 (1)	O6-S2-O8	115.5 (4)
O1-S1-O4	109.2 (2)	O7-S2-O8	109.9 (4)
O2-S1-O3	107.4 (2)	C3-N2-C2	113.0 (2)
O2-S1-O4	110.8 (1)	N1-C1-C2	109.9 (2)
O3-S1-O4	111.7 (2)	N2-C2-C1	111.5 (2)
O5-S2-O6	108.6 (3)	N2-C3-C4	110.4(2)
O5-S2-O7	103.1 (3)	N3-C4-C3	110.7 (3)
05-82-08	114.1 (4)		

Table 2 Hydrogon bond goometry (Å $^{\circ}$)

Hydrogen-bond	geometry	(А,).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1w-H1w1\cdots O2$	0.86	2.03	2.875 (4)	169
$N1 - H1n2 \cdots O1$	0.86	1.93	2.772 (4)	164
$N1 - H1n1 \cdots O5$	0.86	1.95	2.793 (5)	166
$N1 - H1n3 \cdots O3^{i}$	0.86	2.17	2.946 (4)	151
$N2-H2n2\cdotsO1^{ii}$	0.86	2.07	2.833 (3)	148
$N2-H2n1\cdots O8^{iii}$	0.86	1.96	2.788 (6)	161
$N3-H3n1\cdots O2^{iv}$	0.86	1.91	2.738 (4)	162
$N3-H3n3\cdots O6^{v}$	0.86	2.22	3.001 (7)	151
$N3-H3n3\cdots O7^{v}$	0.86	2.32	3.080 (6)	147
$N3-H3n3\cdots O8^{ii}$	0.86	2.35	3.122 (8)	150
$N3-H3n2\cdots O3^{vi}$	0.86	1.90	2.755 (4)	174
Summer and an (i		1 - 1 (2)		- 1 1. (33)

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (iii) $x, -y + 1, z - \frac{1}{2}$; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (vi) $-x, y, -z + \frac{1}{2}$.

The sulfate group lying on the twofold axis is disordered, and the O atoms were refined as four O atoms of 0.5 site occupancy each. The four S–O distances were restrained to within 0.005 Å of each other. The C- and N-bound H atoms were placed at calculated positions (C-H = 0.97 Å and N-H = 0.86 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H) = 1.2U_{eq}(C,N)$. The water H atom was placed in a chemically sensible position on the basis of a hydrogen-bonding interaction and refined as riding $[U_{iso}(H) = 1.2U_{eq}(O)]$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

We thank the Natural Scientific Foundation Committee of Shanxi Province (No. 20041031) and the University of Malaya for generously supporting this study.

References

- Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.
- Gharbi, A., Jouini, A. & Durif, A. (1995). J. Solid State Chem. 114, 42-51.
- Golubev, S. N. & Kondrashev, Yu. D. (1981). Zh. Strukt. Khim. 22, 80-84.

Ilioudis, C. A., Hancock, K. S. B., Georganopoulou, D. G. & Steed, J. W. (2000). New J. Chem. 24, 787–798.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Mazus, M. D., Neverov, V. A., Biyushkin, V. N., Popa, E. V. & Malinovskii, T. I. (1987). Kristallografiya, 32, 1272–1274.

- Rogers, R. D. & Bauer, C. B. (1994). J. Chem. Cryst. 24, 281-283.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.